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Abstract

Lasso (Least Absolute Shrinkage and Selection Operator) is a popular and
widely used regression method that does linear regression and variable selection
in the field of statistics and machine learning. In this paper, we aim to present
an inexact Semismooth Newton augmented Lagrangian method to solve Lasso
problems. With the advantage of the second order sparsity of the problem, we
can reduce the expensive computational cost and yield a fast and highly efficient
algorithm. In addition, we implement this algorithm in an R package, apply it to
real world data and validate its performance by conducting experiments against its
competitors. We also apply our approach to genome-wide methylation profiling on
human ageing rates.
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Chapter 1

Introduction

The problem of linear regression in general seeks to find parameter estimates
β̂ that minimise the sum of squares given the observed data x, y, and β a vector:

β̂ = argmin
β

n∑
i=1

(yi − βxi)
2

In the case of massively underdetermined models, that is: those in which the
length of the parameter vector m is much greater than the number of data points n,
we will often want to solve an additional problem, which is to remove or set to zero
as many parameter estimates as possible while retaining predictive accuracy. This
will reveal which parameters have a tangible effect, and improves the explainability
of the model. With ever-pressing emphasis on machine learning techniques in the
era of big data, feature selection methods have become a research interest in the
field of statistics and machine learning. Ranging from Lasso (Tibshirani 1996) [42]
and Smoothly Clipped Absolute Deviation Penalty (SCAD) (Fan et al. 2001) [14],
to the recent proposal on constrained Lasso by (Gaines et al. 2018) [19], many
researchers have aimed to prove its effectiveness in different settings. The Lasso
minimisation is formulated as

min
x

1

2
∥Ax− b∥22 + λ∥x∥1 (1.1)

where A ∈ Rm×n is the design matrix (data), b ∈ Rm is the response variable
vector, x ∈ Rn is the explanatory variable vector and λ > 0 is the regularisation
parameter. We will focus on the Lasso proposed by (Tibshirani 1996) [42] which
involves a constraint on a suitable norm of the vector β, although this can
be computationally costly. It is therefore useful to implement computationally
efficient and fast algorithms. Many optimisation algorithms have been proposed
to tackle large-scale optimisation problems. For the first order approaches, there
are Alternating direction method of multipliers (ADMM) (Boyd et al. 2011) [7],
Gradient Descent Method and Sub-gradient Method (Bertsekas 2015) [3], Fast
Iterative Shrinkage-Thresholding Algorithm (Beck et al. 2009) [2] and many more
to mention. In addition to that, second order methods are gaining more attention
with research on matrix-free Interior Point Method (Gondzio 2012, Fountoulakis
et al. 2014) [22, 16], Forward-Backward Splitting-Newton (Xiao et al. 2018) [47]

1
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and Semismooth Newton Augmented Lagrangian method (Li et al. 2018) [30].
Our paper proposes an implementation of the Semismooth Newton Augmented
Lagrangian (SSNAL) Method based on the study proposed by (Li et al. 2018)
[30] in R. By using the dual problem method, this algorithm brings computational
advantages, uses a smaller number of variables and several constraints. Then,
SSNAL solves the dual problem of (1.1) where the second order sparsity property
is fulled exploited.

The SSNAL algorithm not only works for Lasso. There are many related
works done with the SSNAL method on different settings of Lasso problems
and general convex composite optimisation problems. Semidefinite Programming
Problem (Zhao et al. 2010) [50] & (Li et al. 2018) [29], Lasso (Li et al. 2018) [30],
Fused Lasso (Li et al. 2018) [31], Clustered Lasso (Lin et al. 2019) [33], Group
Lasso (Zhang et al. 2020) [49] Constrained Lasso (Deng et al. 2020) [12], Elastic
Net (Boschi et al. 2020) [4], nonsmooth Optimisation (Zhou et al. 2021) [51] and
many more. Moreover, there is ongoing research to solve Lasso problems with
other algorithms than SSNAL. These includes sparse approximation with Interior
Point Method (De Simone et al. 2022) [11] and improved glmnet for ℓ1-regularised
logistic regression (Yuan et al. 2012) [48].

Thus, our paper is greatly inspired by the research and the prior implementation
in Matlab by the research team of (Li et al. 2018) [30]. We benchmarked
and debugged against the Matlab implementation, following the original code
structure of (Li et al. 2018) [30] as closely as possible, but making the relevant
changes and optimisations necessary for an R environment to build a package in
R with C++ to aid statisticians who desire to solve sparse regression and Lasso
problems.

This paper comprises 6 main chapters with several subsections and is organised
as follows: in the next chapter, we will present the basic concepts of lasso regression,
convex optimisation, and the maximal monotone operator. We then propose the
idea of the augmented Lagrangian function and the concept of convergence rates
which are the key concepts in the SSNAL algorithm. Chapter 3 provides the
algorithmic framework and its global and local stopping criteria by analysing its
asymptotic superlinear convergence. An efficient, readily implementable stopping
criterion is suggested to solve the inner subproblem of SSNAL. In Chapters 4
and 5, we perform experiments to validate our implementation by comparing our
results against the original results and glmnet (Friedman et al. 2010) [18]. We
then conclude our paper in the final chapter.
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Chapter 2

Literature Review & Preliminaries

2.1 Lasso Regression

Lasso regression introduces an ℓ1 regulariser term to constrain the ℓ1 norm
(sum of absolute values) of the parameter vector (Tibshirani 1996) [42]. This
operates as a “budget” which forces factors with a negligible effect towards zero.
In other words, by adding the ℓ1 norm to the problem, we can obtain sparse
solutions. The method was introduced as an improvement on ridge regression,
which uses an ℓ2 regulariser term (sum of squared parameter estimates). It is
named after a type of lance due to its effect of “reining in” parameters, but may
also be referred to by its acronym least absolute shrinkage and selection operator.

The Lasso problem may be formally specified in one of two ways. The first is
by a simple constrained optimisation:

argmin
β0,β

{
1

2N

N∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2

}
, subject to

p∑
j=1

|βj| ≤ t (2.1)

In this case the budget is t. We can rewrite the same problem in matrix form:

min
x

1

2
∥Ax− b∥22

s.t. ∥x∥1 ≤ t
(2.2)

It may also be formulated and specified by its Lagrangian form:

min
x

1

2
∥Ax− b∥2 + λ∥x∥1

where A ∈ Rm×n is the design matrix (data), b ∈ Rm is the response variable
vector, x ∈ Rn is the explanatory variable vector and λ > 0 is the regularisation
parameter. In this case the budget is varied by changing λ. It is simpler to work
with the Lagrangian form in practice, and we do so here.

The effect of changing the budget is illustrated in Figure 2.1 (Hastie et al. 2009)
[24]. Note that s is t relativised to the value of ∥β∥1 in the unconstrained case.
The optimal value of the budget is often obtained in practice by cross-validation

3
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Figure 2.1: Effect of varying t

to maintain accuracy. Our package does not yet have functionality for this to be
performed automatically, but for this example model the value chosen is indicated
by the red line. Notice that only three parameters have been retained.

In order to see why Lasso regression in particular is inclined to set parameters
to zero, consider the β1 against β2 plane for a 2-dimensional model in Figure 2.2
(Hastie et al. 2015) [25]. The blue diamond and circle are the constraint regions
introduced by the budget for Lasso and ridge regression, respectively. Concentric
ellipses represent solutions to the basic optimisation problem at progressively
lower budgets. A solution is found at the intersection of the ellipse; the contours
of equal residual sum of squares and the constraint region. This will tend to lie
on axes for a diamond; that is, when one parameter is zero. In particular, if this
is extended to higher dimensions, the diamond will take the form of a rhombus,
with many vertices and flat edges allowing several parameters to be set to zero.

Finally, consider a generalisation of the problem in which we constrain not
to a norm of β but to a certain number of non-zero estimates. This is known as
best-subset selection, and while this is theoretically preferred to other approaches,
it involves assessing each subset separately. This is however a combinatorial
problem, so the computational complexity will grow as O(m!). This is infeasible
for most real-world applications. Although there are no closed-form solutions to
Lasso problems, we can use various methods such as FISTA, ADMM and our
proposed algorithm, SSNAL.

4
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Figure 2.2: Ridge vs Lasso regression for two parameters

2.2 Convex Optimisation

In order to better understand the concepts of the paper, we review some
fundamental elements of convex optimisation.

2.2.1 Subgradient

The first important concept is that of the subgradient, which is defined as
follows (Hastie et al. 2015 & Rockafellar 2015) [25, 40]: the subgradient at a point
x0 is a number c ∈ R such that

f(x)− f(x0) ≥ c(x− x0), ∀x ∈ dom f (2.3)

The subdifferential is a nonempty closed interval [a, b] of permissible values for c
and may be obtained by the left and right limit definitions:

a = lim
x→x−

0

f(x)− f(x0)

x− x0

b = lim
x→x+

0

f(x)− f(x0)

x− x0

(2.4)

For instance, the function y = |x| depicted in Figure 2.3 where y is not differ-
entiable at x = 0, but admits several subgradients here. In particular, any line
with a gradient between -1 and 1 inclusive will lie on or exclusively below |x| as
required. Therefore, the subdifferential here is the interval [−1, 1]. Note that
we have differentiability at a point x0 if and only if the subdifferential there is a
singleton set. This idea can be generalised to vectors and dual spaces. If f is a
convex vector function then any vector v such that f(x)− f(x0) ≥ v · (x− x0) is
a subgradient. The subdifferential is defined similarly and is denoted by ∂f(x0)
f(x)− f(x0) ≥ v∗(x−x0), for a functional v∗ in a dual space V ∗ defines our terms
in this case.
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Figure 2.3: y = |x| and other straight lines

2.2.2 Fenchel Conjugate

The Fenchel conjugate function (Fenchel 1949) [15], also known as a convex
conjugate function, is defined as:

f ∗(y) = sup
x∈dom f

(yTx− f(x)) (2.5)

where f ∗ is closed and convex (even when f is not). Then the following relations
hold.

y ∈ ∂f(x) ⇐⇒ x ∈ ∂f ∗(y) ⇐⇒ xTy = f(x) + f ∗(y) (2.6)

As an example, the conjugate function of the Lasso penalty can be expressed as,

p∗(z) = I{∥z∥∞≤λ}

{
0, ∥z∥∞ ≤ λ

∞, otherwise

where p∗ is an indicator function and a continuous differentiable function. In
practice, there is a tight association between the convex conjugate and the solution
to Lagrangian optimisation problem, which is discussed in next subsections.

2.2.3 Proximal Point Operators

Let f : Rn → R be a continuous convex function, (Rockafellar 1976a & Parikh
et al. 2004) [38, 35] introduce the proximal point operator associated with p at x
with σ > 0, where Proxp(·) is defined as

Proxp(x) := argmin
u∈X

{
p(x) +

1

2
∥u− x∥2

}
, ∀x ∈ X

when p is differentiable and σ is sufficiently small, we have Proxσp(x) ≈ x−∇p(x).
Moreover, by the Moreau identity, we have x = Proxtp(x) + tProx t−1p∗(x/t) for
t > 0.

6
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To implement SSNAL, we need the proximal mapping operator of the penalty
function p and of its Fenchel Conjugate p∗. Thus, for each component i = 1, . . . , n
of x, we have

Proxσp(xi) =


xi − σλ, xi ≥ σλ

0, |xi| < σλ

xi + σλ, xi ≤ −σλ
(2.7)

Proxp∗/σ(xi/σ) =


λ, xi ≥ σλ

xi/σ, |xi| < σλ

−λ, xi ≤ −σλ
(2.8)

Then Proxσp(x) = σ Proxp∗(x/σ) holds.

2.2.4 Lagrangian Dual

Referring to (Boyd et al. 2004) [6], suppose we define an optimisation problem
in a standard form:

min f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p.

with variable x ∈ Rn. We let the domain D =
⋂m

i=0 dom fi∩
⋂p

i=1 domhi, which is
nonempty, and its primal optimal value be p∗. In the general case, if we minimise
f0(x) subject to fi(x) ≤ 0 and hi(x) = 0, then we can define the Lagrangian as:

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

where the domain is defined as, domL = D×Rm×Rp. λi and νi are the Lagrangian
multipliers associated with the ith inequality constraint fi(x) ≤ 0 and the ith
equality constraint hi(x) = 0 respectively. We then define the Lagrangian dual
function as:

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

)

In the particular case of our Lasso problem, we have only a single function fi
which must be less than or equal to zero, the ℓ1 norm of the parameter vector β
minus a suitable budget.

2.2.5 Weak & Strong Duality

We denote the optimal value of the Lagrangian dual problem as d∗ and the
best lower bound its optimal value is the optimal value of the primal problem
denoted as p∗. If the inequality

d∗ ≤ p∗

7
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holds, then we say that the weak duality property holds in the problem.
If the primal problem is convex and there exists an equality,

d∗ = p∗

then we say that the strong duality property holds in the problem. In other words,
d∗ − p∗ = 0 where the optimal duality gap is zero.

2.2.6 KKT Optimality Conditions

From (Boyd et al. 2004 & Gauraha 2018) [6, 20], Karush-Kuhn-Tucker (KKT)
conditions state that for any optimisation problem with differentiable objective
and constraint functions for which strong duality holds, any pair of primal and
dual optimal points must satisfy the condition below,

• Stationary Condition : Subdifferntial (2.4) of L(x, λ, ν) at (x∗, λ∗, ν∗)

∇f0(x∗) +
m∑
i=1

λ∗i∇fi(x∗) +
p∑

i=1

ν∗i ∇hi(x∗) = 0

• Complementary Slackness

λ∗i fi(x
∗) = 0, i = 1, . . . ,m

The complementary slackness property establishes useful relations between
the value of the ith primal variable and the slackness of the ith dual
constraint. Hence, the property allows to us to construct a dual optimal
solution by starting from a primal optimal solution.

• Primal Feasibility

fi(x
∗) ≤ 0, i = 1, ...,m and hi(x∗) = 0, i = 1, ..., p

• Dual Feasibility
λ∗i ≥ 0, i = 1, . . . ,m

To sum up, we will use the condition as below to proceed to the augmented
Lagrangian method that satisfies the KKT conditions.

fi(x
∗) ≤ 0, i = 1, ...,m

hi(x
∗) = 0, i = 1, ..., p

λ∗i ≥ 0, i = 1, ...,m

λ∗i fi(x
∗) = 0, i = 1, ...,m

∇f0(x∗) +
m∑
i=1

λ∗i∇fi(x∗) +
p∑

i=1

ν∗i ∇hi(x∗) = 0

8
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Here, fi are convex functions and hi are affine functions1. x∗ minimises L(x, λ∗, ν∗)
over x, where its gradient vanishes at x∗.

2.3 Augmented Lagrangian Method
We begin by considering a simple optimisation problem on the addition of two

functions f and h of x (Bouman, 2020) [5]:

x̂ = argmin
x

(f(x) + h(x))

Now in the case where f and h are not amenable to the same optimisation
techniques, we may transform this into a bivariate optimisation problem in terms
of x, v and constrain x = v, which appears to be a more difficult problem.

x̂ = argmin
(x,v)

(f(x) + h(v))

However we can add a penalty term so that we can remove the constraint.

x̂ = argmin
(x,v)

(
f(x) + h(v) +

a

2
∥x− v∥2

)
Now in the limit as a→ ∞, we obtain the solution to the original constrained

problem. Sufficiently large a yields approximate solutions.
Finally, add a “pre-loading” u:

x̂ = argmin
(x,v)

(
f(x) + h(v) +

a

2
∥x− v + u∥2

)
The u which sets x = v and optimises can then be found iteratively:

un+1 = un + (x− v)

This can be thought of intuitively as converging approximately to the problem
by displacing the x − v component so that u dominates and (x − v) → 0, i.e.
→ x = v, and the constraint is restored.

The implementation of these general ideas in our particular semismooth Newton
augmented Lagrangian (SSNAL) algorithm will become clear in the rest of the
literature review and preliminaries.

2.4 Maximal Monotone Operator
We denote the maximal monotone operator of convex function f to be,

Tf (x) := ∂f(x), T −1
f (x′) := ∂f ∗(x′)

1An affine function is a function composed of a sum of constant and a linear function given
as f(x) = A(x) + b for some matrix A and vector b of appropriate dimensions. i.e. a linear
transformation followed by a translation.

9
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We also denote the maximal monotone operator of convex-concave function l
to be,

Tl(y, z, x) := {(y′, z′,−x′) ∈ ∂l(y, z, x)},
T −1
l (y′, z′, x′) := {(y, z, x)|(y′, z′,−x′) ∈ ∂l(y, z, x)}

now we need,
1. Tf to satisfy the error bound condition, the metrically regular condition
for the origin with the constant af which is called the error bound modulus
associated with T . By (Cui et al. 2016) [10] and (Li et al. 2018) [30], when
T −1(0) ̸= ∅,∃ε > 0 & a > 0 such that

dist(ξ, T (0)) ≤ a∥η∥, ∀η ∈ B(0, ε), ∀ξ ∈ T −1(η)

where dist(x, C) := infx′∈C∥x− x′∥ for any x ∈ X and any C ⊂ X and B(0, ε) =
{y ∈ Y : ∥y∥ < ε} (open ball of radius ε about y) thus,

dist(x, T −1
f (0)) ≤ af dist(0, Tf (x)) (2.9)

2. Tl is metrically subregular at (y∗, z∗, x∗) for the origin with the modulus al, by
(Deng et al. 2020) [12], if there exist neighbourhoods U of (y∗, z∗, x∗) and V of 0
such that

dist((y∗, z∗, x∗), T −1
l (0)) ≤ al dist(0, Tl(y

∗, z∗, x∗) ∩ V), ∀(y∗, z∗, x∗) ∈ U
(2.10)

Then, for any r ∈ dom(h), there exists a constant κ1 >0 and neighbourhood
E1 of r such that ∀r′ ∈ E .

h(r′) ≥ h(r) + ⟨∇h(r), r′ − r⟩+ κ1∥r − r′∥2 (2.11)

Since h(r) is 1-strongly convex, 2.11 holds with κ1 = 1. ∂p is metrically subregular
with constant κ2 > 0, i.e. for any (x, s) ∈ grp(∂p), there exists a constant κ2 > 0
& a neighbourhood E2 of x such that for ∀x′ ∈ E2

p(x′) ≥ p(x) + ⟨s, x′ − x⟩+ κ2 dist
2(x′, (∂p)−1(s)) (2.12)

∂(∥x∥1) is metric subregular since the l1 norm of a vector is a special case of
nuclear norm ∥·∥∗ of a matrix.

2.5 Primal & Dual Problems

The primal function is defined as

(P) max−{f(x) := h(Ax)− ⟨c, x⟩+ p(x)} (2.13)

where A : X → Y, h :→ Y → R, p : X → (−∞,+∞] and c ∈ X is a vector. X
and Y are two real finite dimensional Euclidean spaces each with an inner product

10



SSNAL for Solving Lasso Problems with Implementation in R 11

⟨·, ·⟩ and its induced norm ∥·∥.
The dual function is defined as

(D) min{h∗(ξ) + p∗(u) | A∗ξ + u = c} (2.14)

where, A∗ is an adjoint matrix of A and h∗(·) and p∗(·) are Fenchel conjugate
functions(2.5) of h(·) and p(·) respectively. We want to minimise the ℓ1-regularised
Lasso problem (1.1). Thus, we first set a mild assumption as below.

Assumption 1. h∗(·) is essentially smooth where h∗ is differentiable on
int(domh∗) ̸= ∅ and limk→∞∥h∗(ξk)∥ = +∞ whenever {ξk} is a sequence in
int(domh∗) converging to a boundary point ξ of int(domh∗). p∗(·) is either an
indicator function δp(·) or a support function δ∗p for some nonempty polyhedral
convex set P ⊆ X .
Then we define the primal function as

(P) min

{
1

2
∥Ax− b∥2 + λ∥x∥1

}
(2.15)

where h(ξ) = 1
2
∥ξ − b∥2, p(x) = λ∥x∥1, and Proxσλ∥·∥1(x) = argminu{1

2
∥u− x∥2 +

σλ∥u∥1}
The dual function is defined as (derivation in Appendix A.)

(D) max

{
− 1

2
∥ξ∥2 + ⟨b, ξ⟩ | AT ξ + u− c = 0, ∥u∥∞ ≤ λ

}
(2.16)

where h∗(ξ) = −1
2
∥ξ∥2 + ⟨b, ξ⟩, p∗(x) = I∥x∥∞ by (2.2.2) and Proxσp(x) = sgn(x) ◦

max{|x| − σλ, 0} by (2.7).

2.6 Augmented Lagrangian Function

Then the Lagrangian function of (D) is,

l(ξ, u;x) = h∗(ξ) + p∗(u)− ⟨x,A∗ξ + u− c⟩, ∀(ξ, u;x) ∈ Y × X × X (2.17)

where x ∈ Rn is the Lagrangian multiplier and penalises the dual constraint’s
violation. By [Proposition 12.60] [43] and [Corollary 4.4] [21], we will further
assume the following,

Assumption 2. h : Y → R is a convex differentiable function whose gradient
is 1

αh
Lipschitz continuous i.e.

∥∇h(ξ′)−∇h(ξ)∥ ≤ 1

αh

∥ξ′ − ξ∥, ∀ξ′, ξ ∈ Y (2.18)

(h∗(·) is strongly convex with modulus αk)
Assumption 3. h is essentially locally strongly convex, i.e. for any compact

11
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and convex set K ⊂ dom ∂h , there exists βK > 0 s.t.

(1− λ)h(ξ′) + λh(ξ) ≤ h((1− λ)ξ′ + λξ) +
1

2
βKλ(1− λ)∥ξ′ − ξ∥2, ∀ξ′, ξ ∈ K

(2.19)

(∇h∗(·) is locally Lipschitz continuous and directionally differentiable on int(domh∗))

Assumption 4. The Karush Kuhn Tucker (KKT) system is nonempty and
its solution is denoted as ξ̄, ū and x̄.

The KKT conditions suggested by (Boyd et al. 2004 & Gauraha 2018) [6, 20]
in the context of Lasso are,

0 ∈ δh∗(ξ)− Ax,

0 ∈ ∂p∗(u)− x,

0 = A∗ξ + u− c,

(x, ξ, u) ∈ X × Y × X

As we assumed that KKT system has at least one solution and by Assumption
1, any points that satisfy the KKT conditions are primal and dual optimal and
have zero duality gap by the Strong Duality Theorem 2.2.5. Thus, we can rewrite
the KKT system as 

0 ∈ ∂h∗(ξ)− Ax,

0 ∈ ∂p∗(u)− x,

0 = A∗ξ + u− c,

(x, ξ, u) ∈ X × int(domh∗)×X

(2.20)

Therefore, the stationary condition, Slater’s condition, primal and dual feasibility
are shown above. More importantly, for solving the dual problem (2.14), we do
not have to consider the entire domain but to focus on int(domh∗)×X . Now we
denote (ξ̄, ū) to be an optimal solution to the dual problem (2.14), we also denote
M(ξ̄, ū) as the set of Lagrangian multipliers associated with (ξ̄, ū). Then with
M(ξ̄, ū) ̸= ∅ we can say that the second order sufficient condition (Rockafellar
2015) [40] for optimality of the dual problem (2.14) holds at (ξ̄, ū) if h is twice
differentiable, ∇h(ξ∗) = 0 and ∇2h(ξ∗) ≻ 0 then ξ∗ is a strict local minimum of h.

Following from Assumption 4 and [Theorem 1] [30], the KKT system
(2.20) has at least one solution and the second order sufficient condition for the
dual problem holds at (ξ̄, ū). Tl is metrically subregular (2.10) at (ξ̄, ū, x̄) for the
origin. Then (Boyd et al. 2004) [6] suggests that (ξ̄, ū, x̄) solves the KKT (2.20)
if and only if (ξ̄, ū) and (x̄) are the optimal solutions of (D) and (P), respectively.
Given σ > 0, the augmented Lagrangian function of (D) is,

Lσ(ξ̄, ū; x̄) := l(ξ, u;x) +
σ

2
∥A∗ξ + u− c∥2, ∀(ξ, u;x) ∈ Y × X × X (2.21)

where the Lagrangian function l(ξ, u;x) is defined in 2.17.

12
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2.7 Convergence Rates
In this paper, we will introduce the superlinear convergence of the SSNAL

algorithm, where it asymptotically converges Q-superlinearly and R-superlinearly.
Referring to (Hintermüller, 2010) [26], we let {xk} ⊂ Rn denote a sequence with
limit x∗ ∈ Rn, and let p ∈ [1,+∞) then the quotient factor (Q-factor) is,

Qp{xk} :=


lim supk→∞

∥xk+1−x∗∥
∥xk−x∗∥p , if xk ̸= x∗, ∀k ≥ k0

0, if xk = x∗, ∀k ≥ k0

+∞, otherwise
for some k0 ∈ N

and the quantity is called the Q-order of {xk} where,

OQ{xk} := inf{p ∈ [1,+∞) : Qp{xk} = +∞}

There always exists a value p0 ∈ [1,+∞) such that

Qp{xk} =

{
0, for p ∈ [1, p0)

+∞, for p ∈ (p0,+∞)

As our interest lies in the linear convergence rate, the Q-factors depend on the
norms used and the Q-order of 1 and 2 are suggested below.

Q1{xk} = 0 : Q-superlinear convergence
0 < Q1{xk} < 1 : Q-linear convergence
Q2{xk} = 0 : Q-superquadratic convergence
0 < Q2{xk} < 1 : Q-quadratic convergence

(2.22)

Now we look at R-convergence. Let {xk} ⊂ R denote a sequence with limit
x∗ ∈ Rn and let p ∈ [1,+∞) then the root convergence factor (R-factor) of {xk}
is,

Rp{xk} :=

{
lim supk→∞∥xk − x∗∥1/k, if p = 1

lim supk→∞∥xk − x∗∥1/pk , if p > 1
(2.23)

and the quantity is called the R-order of {xk} where,

OR{xk} := inf{p ∈ [1,+∞) : Rp{xk} = 1}

In contrast with the Q-factor, the R-factor is independent of the norm and there
always exists a value p0 ∈ [1,∞) such that

Rp{xk} =

{
0, for p ∈ [1, p0)

1, for p ∈ (p0,+∞)

and the Q and R quantities are related as follows:

OQ{xk} ≤ OR{xk} and R1{xk} ≤ Q1{xk}

13



Chapter 3

Implementation of Algorithm

This section comprises two subsections. In the first subsection, we will intro-
duce the inexact augmented Lagrangian method (Algorithm 1) to solve (D)
(2.16) along with the description of global and local convergence criteria for the
superlinear convergence of the algorithm under the mild assumption. In section
3.2, we will describe the Theorem of Semismoothness and semismooth Newton
method (Algorithm 2) along with implementable stopping criteria.

3.1 Inexact Augmented Lagrangian Method

Algorithm 1 Inexact Augmented Lagrangian Method
Let σ0 > 0 be a given penalty parameter. Choose (ξ0, u0, x0) ∈ int(domh∗)×
dom p∗ ×X .

For k = 0, 1, . . . ,∞, perform the following steps in each iteration,

(1) Compute

(ξk+1, uk+1) ≈ argmin{Ψk(ξ, u) := Lσk
(ξ, u;xk)} (3.1)

(2) Compute

xk+1 = xk − σk(A
∗ξk+1 + uk+1 − c) & update σk+1 ↑ σ∞ ≤ ∞

We are interested in studying the convergence of the SSNAL algorithm. Here
we define the term local to mean the fact that the convergence holds if x0 is
selected sufficiently close to x∗ in a sequence {xk}. For the term global, we define
it as the convergence of a sequence {xk} to a local optimum at any given starting
point.

In Algorithm 1 (4), the subproblem (3.1) cannot be solved exactly on each
iteration, however (Rockafellar 1976a, 1976b, 2015) [38, 39, 40] suggest a way
to solve it. Rockafellar introduced a standard stopping criterion for the global
convergence studied in [Section 4] [38], which the asymptotic Q-superlinear

14
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convergence rate of {ξk} is suggested under the Lipschitz continuous assumption
of T −1 with respect to the origin.

3.1.1 Global Convergence

Given a nonnegative summable tolerance parameter sequence {εk} and {σk},

Ψk(ξ
k+1, uk+1)− inf Ψk ≤

ε2k
2σk

,
∞∑
k=0

εk <∞ (A)

Theorem 1. Suppose that the solution set to (P) is nonempty. Then the sequence
{xk} generated by the stopping criteria (A) is bounded and converges to an optimal
solution of (P). In addition, {(ξk, uk)} is also bounded and converges to the unique
optimal solution (ξ̄, ū) ∈ int(domh∗)× dom p∗ of (D).

3.1.2 Local Convergence

Given a nonnegative summable tolerance parameter sequence {δk} and {σk},
the stopping criteria for local convergence defined by [Section 4] [38] is as below,

Ψk(ξ
k+1, uk+1)− inf Ψk ≤

( δ2k
2σk

)
∥xk+1 − xk∥2, δk ≥ 0,

∞∑
k=0

δk <∞ (B1)

dist(0, ∂Ψk(ξ
k+1, uk+1) ≤

( δ′k
σk

)
∥xk+1 − xk∥, 0 ≤ δ′k → 0 (B2)

Theorem 2. Assume that the solution set Ω to (P) is nonempty. Suppose that
Assumption 2 and Assumption 3 hold for Tf with modulus af(2.10). Then
{xk} is convergent and for all k sufficiently large, the inequality below holds,

dist(xk+1,Ω) ≤ θk dist(x
k,Ω), (3.2)

where θk = (af(a
2
f + σ2

k)
−1/2 + 2δk)(1 − δk)

−1 → θ∞ = af(a
2
f + σ2

∞)−1/2 < 1 as
k → +∞. In addition, if Tl is metrically subregular at (ξ̄, ū, x̄) for the origin with
modulus al and the stopping criterion B2, then for all k sufficiently large,

∥(ξk+1, uk+1)− (ξ̄, ū)∥ ≤ θ′k∥xk+1 − xk∥

where θ′k = al(1 + δ′k)/σk with limk→∞ θ′k = al/σ∞. Moreover, the conclusions of
Theorem 1 about {(ξk, uk)} are valid.

When σ∞ = +∞, the inequality (3.2) implies that {xk} converges with Q-
superlinear convergence. (Cui et al. 2016) [10] suggest with sufficient conditions
for ensuring the metric subregularity of the KKT conditions, dual feasibility
and the dual objective function value converge asymptotically R-superlinearly as
described in Section 2.7. Then by (Proposition 4.1) [10] we obtain the following
theorem.

15
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Theorem 3. Let {(ξk, uk)} be a sequence generated under the condition B1. Then
for all k sufficiently large such that δk < 1, it holds that

∥(ξk+1, uk+1)− (ξ̄, ū)∥ ≤ θ′k∥xk+1 − xk∥
≤ θ′k(1− δk)

−1 dist(xk,Ω)
(3.3)

When σ∞ = +∞, the inequality (3.3) implies that {(ξk, uk)} converges with R-
superlinear convergence. Hence, the SSNAL is guaranteed to produce a sequence
that is asymptotically convergent to solve (D). Combing these 3 theorems leads
to the asymptotic superlinear convergence of the augmented Lagrangian method
to solve the Lasso problem.

3.2 Semismooth Newton Method

In this subsection, we aim to provide more detailed workings compared to (Li
et al. 2018) [30]. With h∗(ξ) = −1

2
∥x∥2 + ⟨b, ξ⟩, p∗(x) = I∥x∥∞ and Proxσp(x) =

sgn(x) ◦max{|x| − σλ, 0} and from the level set,

min
ξ,u

Ψ(ξ, u) := Lσ(ξ, u, x̄)

where σ > 0 and x̄ ∈ X we proceed to solve the inner subproblems in the
augmented Lagrangian method (3.1).

3.2.1 Theorem of Semismoothness

Referring to (Mifflin 1977, Qi et al. 1993 & Schmidt 2010) [34, 37, 41], let
us define the Theorem of Semismoothness. Suppose that M : X ⇒ L(X ,Y)1 &
F : X → Y , is a locally Lipschitz continuous function. F is said to be semismooth
at x ∈ X if F is directionally differentiable at x and for any G ∈ ∂F (x+∆x) =
M(x+∆x) & ∆x→ 0.

F (x+∆x)− F (x)−G(∆x) = o(∥∆∥)

F is said to be strongly semismooth at x ∈ X if,

F (x+∆x)− F (x)−G(∆x) = O(∥∆∥2)

Then F is said to be semismooth (strongly semismooth) function on X if it is
semismooth (strongly semismooth) everywhere in X

(Qi et al, 2005) [36] and (Li et al. 2018) [30] mentioned all twice continuous
differentiable functions and piecewise linear functions are strongly semismooth
everywhere. Since h∗(·) is twice differentiable and Proxλ∥x∥1(·) is a Lipschitz con-
tinuous piecewise affine function, we conclude that they are strongly semismooth.

1Multivalued functions or multifunctions are functions whose values are sets instead of of
points. Given such a multifunction, F : Rn → Rm then ΓF := {(x, y) ∈ Rn × Rm|y ∈ F (x)}.
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We newly denote for ξ ∈ Y ,

ψ(ξ) := inf
z
Ψ(ξ, u) = inf Lσ(ξ, u;x)

= h∗(ξ) + p∗(Proxp∗/σ)(x̄/σ − A∗ξ + c)

+
1

2σ
∥Proxσp(x̄− σ(A∗ξ − c))∥2 − 1

2σ
∥x̄∥2

(3.4)

Suppose (ξ̄, ū) = argminΨ(ξ, u) where (ξ̄, ū) ∈ int(domh∗)× dom p∗, then{
ξ̄ = argminψ(ξ)

ū = Proxp∗/σ(x̄/σ − A∗ξ̄ + c).
(3.5)

To obtain the value of ξ, we perform the second order derivative such that

∇ψ(ξ) = ∇h∗(ξ)− AProxσp(x̄− σ(A∗ξ − c)), ∀ξ ∈ int(domh∗)

∂2ψ(ξ) = ∇2h∗(ξ) + σAProxσp(x̄− σ(A∗ξ − c))A∗

Since h∗ is a convex function which is locally Lipschitz continuous and note that
ψ(·) is strongly convex and continuously differentiable on int(domh∗), we define
the new and well defined operator for the second order derivative as below,

∇ψ(ξ) = ∇h∗(ξ)− AProxσp(x̄− σ(A∗ξ − c)), ∀ξ ∈ int(domh∗)

∂̂2ψ(ξ) = ∇2h∗(ξ) + σAProxσp(x̄− σ(A∗ξ − c))A∗ (3.6)

where ∂2h∗(ξ) is the Clarke subdifferential (Clarke 1990) [9] of ∇h∗(·) at ξ and
∂ Proxσp(x̄− σ(A∗ξ − c)) is the Clarke subdifferential of the Lipschitz continuous
mapping and Jacobian of Proxσp(·) at x̄− σ(A∗ξ − c). [Proposition 2.3.3. &
Theorem 2.6.6] [9] suggests,

∂2ψ(ξ)(d) ⊆ ∂̂2ψ(ξ)(d), ∀d ∈ Y

where if every element in ∂2ψ(ξ) is positive definite, so is every element in ∂̂2ψ(ξ)
Then we define the Hessian of ψ at ξ,

V := H + σAUA∗

with H ∈ ∂2h∗(ξ) and U ∈ ∂ Proxσp(x̄−σ(A∗ξ−c)) where for the case of our paper,
h(ξ) = 1

2
∥ξ∥2 + bT ξ, ∇h∗(ξ) = ξ + b, ∇2h∗(ξ) = Im. h∗(·) is twice differentiable

and Proxλ∥·∥ is a piecewise linear function which are strongly semismooth. To
obtain ξ̄, we solve the nonsmooth equation,

∇ψ(ξ) = 0, ξ ∈ int(domh∗) (3.7)

3.2.2 Solving the Subproblem

Now we proceed to Semismooth Newton Algorithm to solve the inner problem.
By [Theorem 14] [30] and [Theorem 3.5] [50] we state the following theorem.

17
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Algorithm 2 Semismooth Newton Method

Given the hyperparameter, µ ∈ (0, 1
2
), η̃ ∈ (0, 1), τ ∈ (0, 1] & δ ∈ (0, 1).

Choose ξ0 ∈ int(domh∗) and iterate the following steps for j = 0, 1, . . .

(1) Choose Hj ∈ ∂2(∇h∗)(ξj) & Uj ∈ ∂ Proxσp(x̃ − σ(A∗ξj − c)). Let Vj :=
Hj + σAUjA

∗

Solve the following Linear System exactly or by the conjugate gradient
algorithm to find dj

Vjd+∇ψ(ξj) = 0,where d = ∆ξ

s.t. ∥Vjdj +∇ψ(ξj)∥ ≤ min(η̃, ∥∇ψ(ξj)∥)1+τ

(2) Set α = δmj where mj is the first nonnegative integer m for which,

ξj + δmdj ∈ int(domh∗) and ψ(ξj + δmdj) ≤ ψ(ξj) + µδm⟨∇ψ(ξj), dj⟩

(3) Set ξj+1 = ξj + αjd
j

Theorem 4. Let the sequence ξj be generated by Algorithm 2 (6), then ξj

converges to the unique optimal solution ξ̄ ∈ int(domh∗) and ū = x̄− σ(AT ξ̄ − c)
at least superlinearly, i.e.,

∥ξj+1 − ξ̄∥ = O(∥ξj − ξ̄∥1+τ ), for any j ≥ 0, Vj ∈ ∂2ψ(ξj) (3.8)

Thus, the rate of convergence for Algorithm 2 (6), is of order 1 + τ . If τ = 0,
then we obtain a locally asymptotic Q-superlinear convergence rate.

We now expand the derivation of the implementable stopping criteria for (A),
(B1) and (B2) that was not shown in the original paper. We first notice that,

Ψk(ξ
k+1, uk+1) = inf

u
Ψk(ξ

k+1, u) = ψk(ξ
k+1)

inf Ψk = inf
ξ,u

Ψk(ξ, u) = inf
ξ
inf
u
Ψk(ξ, u) = inf

ξ
ψk(ξ) = inf ψk

then, Ψk(ξ
k+1, uk+1)− inf Ψk = ψk(ξ

k+1)− inf ψk

combining this and the strong convexity assumption of h∗ in (2.18) and (2.19), we
have

ψk(ξ̄)− ψk(ξ
k+1) ≥ 1

αh

(⟨∇ψk(ξ
k+1), ξ̄ − ξk+1⟩+ 1

2
∥ξ̄ − ξk+1∥2)

⇐⇒ ψk(ξ
k+1)− ψk(ξ̄) ≤ − 1

αh

(⟨∇ψk(ξ
k+1), ξ̄ − ξk+1⟩+ 1

2
∥ξ̄ − ξk+1∥2)

= − 1

2αh

∥ξ̄ − ξk+1 +∇ψk(ξ
k+1)∥2 + 1

2αh

∥∇ψk(ξ
k+1)∥2

⇐⇒ ψk(ξ
k+1)− inf ψk ≤

1

2αh

∥∇ψk(ξ
k+1)∥2

(3.9)
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where (∇ψk(ξ
k+1), 0) ∈ ∂Ψk(ξ

k+1, uk+1). Then by 3.9 we can achieve the following
criteria. For equation (A),

1

2αh

∥∇ψk(ξ
k+1)∥2 ≤ ε2k

2σk

⇐⇒ ∥∇ψk(ξ
k+1)∥2 ≤ ε2k

σk/αh

⇐⇒ ∥ψk(ξ
k+1)∥ ≤ εk√

σk/αh

by [Proposition 3.2] [32] this can also be expressed as below.

dist(0, ∂Ψk(ξ
k+1, uk+1)) ≤ εk/max(1,

√
σk/αh), where

∞∑
k=0

εk <∞

For equation (B1),

1

2αh

∥∇ψk(ξ
k+1)∥2 ≤ δ2k

2σk
∥xk+1 − xk∥2

where xk+1 := xk + σk(A ∗ ξk+1 + zk+1 − c)

⇐⇒ ∥∇ψk(ξ
k+1)∥2 ≤ αhσkδ

2
k∥A∗ξk+1 + uk+1 − c∥2

⇐⇒ ∥∇ψk(ξ
k+1)∥ ≤

√
αhσkδk∥A∗ξk+1 + uk+1 − c∥

by [Proposition 3.2] [32] this is also equivalent to,

⇐⇒ dist(0,∇ψk(ξ
k+1)) ≤ δk

max(1, σk/αh)
· ∥xk+1 − xk∥

⇐⇒ dist(0, ∂Ψk(ξ
k+1, uk+1)) ≤ δk

max(1, σk/αh)
· ∥xk+1 − xk∥

For equation (B2),

dist(0, ∂Ψk(ξ
k+1, uk+1) ≤

( δ′k
σk

)
∥xk+1 − xk∥

⇐⇒ ∥∇ψk(ξ
k+1)∥ ≤ δ′∥A∗ξk+1 + uk+1 − c∥

To sum up, we obtain the new stopping criteria for the approximate computation,

∥ψk(ξ
k+1)∥ ≤ εk√

σk/αh
(A’)

∥∇ψk(ξ
k+1)∥ ≤

√
αhσkδk∥A∗ξk+1 + uk+1 − c∥ (B1’)

∥∇ψk(ξ
k+1)∥ ≤ δ′∥A∗ξk+1 + uk+1 − c∥, 0 ≤ δ′k → 0 (B2’)

where
∑∞

k=0 εk < ∞ and
∑∞

k=0 δk < ∞ and ∥∇ψk(ξ
k+1)∥ is sufficiently small.
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Now we want to solve the following equation in step 1 of Algorithm 2,

(H + σAUA∗)d = −∇ψ(ξ) (3.10)

where H ∈ ∂2h∗(ξ) is a sparse matrix, A is a matrix with basis Rn×m and
U ∈ ∂ Proxσλ∥·∥1(u) with u := x̃ = σ(A∗ξ − c). We now follow the settings in
(Li et al. 2018) [30]. Since, H is a symmetric and positive definite matrix, we
let L be a nonsingular matrix such that H = LLT and U is a diagonal and
idempotent matrix. Since we know h∗ is a strongly convex function and H is a
symmetric positive definite matrix, V is also a positive definite matrix. Then the
the subproblem (3.10) can be rewritten as,

(Im + σ(L−1A)U(L−1A)T )(LTd) = −LT∇ψ(ξ)

For convenience, we simplify the equation and rewrite as

(Im + σAUAT )d = −∇ψ(ξ) (3.11)

where A = (L−1A) and the equation (3.11) is the Newton system associated
with the standard Lasso problem (2.15). Since U ∈ Rn×n is a diagonal matrix,
U = diag(u), the cost of computing AUAT and AUATd where the cost is O(m2n)
and O(mn), respectively. To fully exploit the sparsity of U , (Li et al. 2018) [30]
it is suggested to always choose ui where the ith element is given by

ui =

{
0, if |xi| ≤ σλ,

1, otherwise
where x = x̄− σ(A∗ξ − c), i = 1, ..., n.

We let J := {j | |xj| > σλ, j = 1, ..., n} and |J | = r, the cardinality of J . Then
we have

AUAT = (AU)(AU)T = AJAT
J (3.12)

where AJ is the sub-matrix of A with those columns contained in J preserved.
Then, the cost of computing decreases to O(m2r) and O(mr) for AUAT and
AUATd respectively (shown in Figure 3.1 [30]). For the case when r << m,
instead of factorising an m × m matrix, we can invert a much smaller, r × r,
matrix by using the Sherman-Morrison-Wood formula (Van et al 1996) [44],

(Im + σAUAT )−1 = (Im + σAJAT
J )

−1 = Im −AJ (σ
−1Ir +AT

JAJ )
−1AT

J (3.13)

Thus, the total computation costs for solving the Newton linear system (3.11) are
significantly reduced from O(m2(m+ r)) to O(r2(m+ r)) respectively. However,
in practice we have to decide when to solve the linear system by either Cholesky
decomposition or computing the inverse directly. When the number of the nonzero
components of Proxσλ∥·∥1(x) is large, we apply the conjugate gradient algorithm
where σ is small and the current point is relatively further away from the optimal
solution.
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Figure 3.1: Reducing the computational costs from O(m2n) to O(m2r)

Then, in step 2 in Algorithm 2 (6), we perform the Line Search algorithm.
By referring to the First Wolfe Condition (Wolfe 1969) [46],

f(ξj + δmdj) ≤ f(ξj)− δmγ, γ = β∇f(ξj)Tdj > 0

where γ is proportional (factor of β) to the slope of the function along dj at the
current iterate xj, then the general idea of the line search algorithm is that to
minimise a function. In [Theorem 3.5] [50], dj is always a descent direction, and
we calculate the step along the descent direction, d

dj = −H−1
j ∇f(ξj)

where f : Rn → R, ξj ∈ Rn, dj ∈ Rn and ∇f(ξj)Tdj < 0. Once we complete step
2, we proceed to step 3 to compute the sequence of {ξj}. In summary, we have
demonstrated how the Semismooth Newton Algorithm can be implemented for
solving Lasso regression problems.
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Chapter 4

Experiments

In this chapter, we will illustrate our implementation with numerical experi-
ments. According to what we discussed in Chapter 3, we now know that the dual
approach is a more efficient choice since we will deal with sparse problems in this
setting. We will specify our parameter settings on benchmark datasets and the
methylation profiling dataset we used in the comparison with the original paper.
When it comes to numeric calculation or analysis, it is undeniable that Matlab is
a higher performing object oriented programming language compared to relatively
slower language, R. However, our main focus is to assist mathematicians and
statisticians to solve sparse problems in the domain of the R language. Thus,
we expect our package developed in R with the aid of C++ to accomplish faster
computation and boost time efficiency in large-scale dataset. For ease, we will
now define our implementation as R-SSNAL.

4.1 Data

4.1.1 Benchmark Data

In this section, we conducted experiments on various datasets collected from
the UCI data repository1 [13] and Statlib2 [45] in the LIBSVM format (Chang
et al. 2011) [8]. Referring to (Huang et al. 2010) [27], we performed polynomial
basis expansion to expand the original features. By utilising genUCIdata.m from
the SuiteLasso3 repository, pyrim, triazines, abalone, bodyfat, housing, mpg and
space_ga were expanded in different orders but kept consistent with (Li et al.
2018) [30] so that we can have a parallel comparison. We also followed the
naming convention where abalone7 refers to a polynomial basis expansion of
order 7 applied to expand the features of the original data abalone. m and n
are number of samples and number of (expanded) features respectively and all
the problem data are cases where m << n. The last column of Table 5.1 [30]
refers to the largest eigenvalue of AA∗ which is denoted as λmax(AA

∗) and is the
Lipschitz referred to in code as Lip. Through the number of dimensions and largest

1https://archive.ics.uci.edu/ml
2http://lib.stat.cmu.edu/datasets
3https://github.com/MatOpt/SuiteLasso
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Data Dimension(m; n) λmax(AA
∗)

pyrim5 74; 201376 1.22e+06
triazines4 186; 635376 2.07e+07
abalone7 4177; 6435 5.21e+05
bodyfat7 252; 116280 5.29e+04
housing7 506; 77520 3.28e+05
mpg7 392; 3432 1.28e+04
space_ga9 3107; 5005 4.01e+03

Table 4.1: UCI and Statlib Testing Instances

eigenvalue, we can keep the data consistent while we are running the experiment.

4.1.2 Methylation Profiling Data

We further conducted the R-SSNAL algorithm on different datasets. Methy-
lation Profiling Data was provided by (Hannum et al. 2013) [23] where it aimed
to reveal quantitative views of human aging rates. The data consists of genome
wide DNA methylation profiling of individuals across a large age range. The
Illumina Infinium 450k Human DNA methylation Beadchip was used to obtain
DNA methylation profiles across approximately 450k CpGs from human whole
blood. With similar settings to the benchmark data, we performed cross-validation
to determine the best regularising penalty, λ.

4.2 Parameter Tuning

We will follow the same setup as (Li et al. 2018) [30] for the aforementioned
reason in the introduction. For the regularisation parameter, λ in the Lasso
problem (1.1), we set λ = λc∥A∗b∥∞ where λc ∈ (0, 1). In particular, we will use
the values of λc as 1e−3 and 1e−4 to maintain consistency. We also measured the
accuracy of an optimal solution x̄ by using the following relative KKT residual:

η =
∥x̄− Proxλ∥·∥(x̄− A∗(Ax̄− b))∥

1 + ∥x̄∥+ ∥Ax̄− b∥
< ε

For a given tolerance ε > 0, we will terminate the R-SSNAL algorithm when
η < ε and we set ε = 10−6.

4.3 Objective Values

The objective value of the Lasso optimisation problem in R-SSNAL and the
Matlab implementation of SSNAL was taken to be

1

2
∥Ax− b∥22 + λ∥x∥1 (4.1)
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This is the value returned in the primal objective object in the SSNAL imple-
mentations. In order to make appropriate comparisons with glmnet in R, which
optimises on the objective:

1

2

∥Ax− b∥22
m

+ λ∥x∥1 (4.2)

It was necessary to suitably standardise and scale the response variables b and
penalty factor λ on both inputs and outputs. In our tables, we will always refer
to 4.1 when talking about the objective value. This was evaluated with the same
function applied to output of glmnet and R-SSNAL

4.4 Number of Non-Zero Values (NNZ)
In order to estimate the number of non-zero values in the output (that is,

parameter coefficients which are estimated to have an absolute value different
from zero) from R-SSNAL and Matlab the formula

nnz := min

{
k |

k∑
t=1

|x̂t| ≥ 0.999∥x∥1
}

where the x̂t are sorted in descending order, was employed, as in (Li et al. 2018)[30].
For glmnet results, the internal representation of NNZ was used.

4.5 Cross-Validation
A technique used commonly to determine how good a modelling procedure

is is n-fold cross validation, in which a certain fraction of the data is left out
(the training data) and used to make predictions on the remainder (test data)
exactly n times. The mean-squared error (MSE), a standard measure in machine
learning regression prediction analytics, is then calculated as

∑
(bi− b̂i)2/m. Lower

mean-squared errors are therefore better, representing a more accurate model.

4.6 Running Times
The computational results are obtained by running R (version 4.1.2) and

Matlab (version 9.11) on a Windows 11 personal workstation (Quad-core, Intel(R)
Core i5-10300H CPU @ 2.50GHz, 32G RAM). The running times for the Matlab
implementation were taken from the SuiteLasso original code. For glmnet in R,
and for R-SSNAL, the base R, Rprof()4 profiler was used. All the computational
experiments were performed using our personal laptops and faced relatively lower
computational power compared to the original paper.

4https://github.com/r-prof/profile
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Chapter 5

Comparison & Evaluation

This chapter details the results of running experiments with the three different
packages implementing the SSNAL algorithm for the Lasso problem in R and
Matlab across several different data sets: UCI and Statlib data, which is generally
smaller and more instructive, and methylation data, which is much larger. We
use as quantitative measures the primal objectives returned by the functions,
as defined above, the running time, min/max parameter values and number of
non-zeros. We also use n-fold cross validation to assess whether or not the SSNAL
algorithms perform better than glmnet for these data.

5.1 UCI and Statlib data

5.1.1 R vs MATLAB

Firstly, in order to check that we had correctly implemented the algorithm as
in SuiteLasso for Matlab, we checked that the minimum and maximum parameter
estimates, as well as the number of non-zeros, were the same in both packages
(Table 5.2).

For all seven data sets, at two levels of λc = 10−3, 10−4, the minimum and
maximum values were almost identical for Matlab and our implementation in
R. Cursory inspection of the sorted parameter vectors revealed that individual
coefficients varied by at most around 1%, and preserved the sign.

For 13 simulations, the NNZ estimate from Matlab was the same as returned
by R. It varied for λc = 10−3 on the triazines4 data set, but only by 7 non-
zero values (∼1%). It was noted that in general, with the same convergence
stopping tolerance (stoptol) on η, and maximum number of iterations (maxiter),
the R-SSNAL took more iterations to converge (on the order of an extra 20-40%).

We suspected that these very minor anomalies were probably attributable to
numerical imprecision in R, different handling of floating point extrema, or other
technical details, rather than a serious systemic bug, and were satisfied that we
had well replicated the algorithm in R.

It is important to note that the algorithm ran much more slowly in R than in
Matlab (Table 5.1), being on the order of 2-10 times slower for most data sets,
but around 60 times slower for triazines4 data with a relatively loose constraint
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on ∥x∥1 of λc = 10−4, which was computationally the most complex problem.
Profiling the R code revealed that most of the time was spent on the linear
system solution stage of the subproblem. Therefore, despite replicating closely the
optimisations made by (Li et al. 2018) [30] in Matlab, such as preconditioned
symmetric quasi-minimal residual1 (PSQMR) (Freund 1997, Xin et al. 2018)
[17, 28] and other preconditioning methods on the model matrix A, as well as
using RcppEigen23 (Bates et al. 2013) [1] based matrix-matrix and matrix-vector
multiplications, we still suffered performance issues. Some of these will be ablated
by compilation of the R code, but others will need careful attention if, as we
intend, the package is to be released for general use. (The example code for the
R-SSNAL method can be found in Appendix B.)

5.1.2 Primal Objective Values

As outlined above, the final objective values (Table 5.1) were calculated for the
solution vectors returned by R-SSNAL, Matlab’s SuiteLasso and the industry-
standard glmnet4 in R, firstly to add another check that our R-SSNAL algorithm
was correct but also to assess the performance of the algorithm. In the Lasso
problem, we attempt to minimise the objective function, and therefore lower
values represent “better” solutions for the given data.

For all data sets tried, at both values of λc, the objective value returned by our
R code was the same as the Matlab implementation, as expected. The objective
value for the SSNAL methods was however lower than that of the glmnet solution,
around 5-10% lower for most data sets tried. Although the difference was not as
stark for the triazines data at λc = 10−3, it was particularly pronounced for the
small space_ga data.

This discrepancy could have a number of causes. Firstly, the stopping tolerance
for glmnet could be higher than our algorithm, and it may return before it has fully
converged, or it could be that as glmnet principally employs first-order methods,
our second-order Newtonian approach is simply better.

In practice, these small discrepancies may be industrially very relevant in
such domains as the analysis of financial data, in which marginal improvements
correspond to a large competitive edge.

5.1.3 Cross-Validation Accuracy

In order to assess whether the Lasso regression solutions returned by R-
SSNAL outperformed those of glmnet, we performed a 2-fold cross-validation on
the seven datasets of UCI and Statlib data at sensible values of the regularisation
parameter λ close to their respective optima (Figure 5.1). The MSE returned
by our package (using ϵ = 10−6 and maxiter = 200) was significantly lower
than the glmnet estimates at most values of λ on many datasets, although it
was particularly better for the bodyfat and space_ga data. Notice, importantly,

1https://github.com/cran/DWDLargeR
2https://github.com/RcppCore/RcppEigen
3https://stackoverflow.com/questions/35923787/fast-large-matrix-multiplication-in-r
4https://github.com/cran/glmnet
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that these datasets also returned objective values several times lower at the two
values of λc used to compare with the Matlab implementation in Table 5.1. We
therefore expect that our improved primal objective values do in fact translate to
meaningful improvements in learning and modelling accuracy. The NNZ figures
(denoted by labels on the data points) were reasonably similar, and increased as
expected as the regularisation parameter was diminished.

Data λc Time (s) Objective Value

Matlab | R-SSNAL | glmnet Matlab | R-SSNAL | glmnet

pyrim5 10−3 2.16 | 9.92 | 0.40 0.07511 | 0.07511 | 0.0795
(74;201376) 2.33 | 9.64 | 0.38 0.07511 | 0.07511 | 0.0795

10−4 2.63 | 27.82 | 0.26 0.0109 | 0.0108 | 0.0260
2.53 | 26.96 | 0.24 0.0109 | 0.0108 | 0.0260

triazines4 10−3 13.79 | 170.92 | 3.3 0.5452 | 0.5452 | 0.5548
(186;635376) 14.12 | 171.24 | 3.4 0.5452 | 0.5452 | 0.5548

10−4 27.90 | 1580.88 | 5.48 0.1156 | 0.1156 | 0.1524
29.67 | 1477.62 | 5.10 0.1156 | 0.1156 | 0.1524

abalone7 10−3 1.95 | 6.84 | 1.04 11407 | 11407 | 12158
(4177;6435) 2.17 | 6.82 | 1.04 11407 | 11407 | 12158

10−4 3.47 | 18.14 | 2.48 9289 | 9289 | 9716
4.79 | 18.20 | 2.48 9289 | 9289 | 9716

bodyfat7 10−3 1.64 | 5.00 | 0.30 0.2925 | 0.2925 | 1.334
(252;116280) 1.87 | 5.10 | 0.32 0.2925 | 0.2925 | 1.334

10−4 2.27 | 7.52 | 0.98 0.03031 | 0.03031 | 0.2372
2.53 | 7.38 | 0.96 0.03031 | 0.03031 | 0.2372

housing7 10−3 2.92 | 13.88 | 0.60 2775 | 2775 | 2819
(506;77520) 2.94 | 13.72 | 0.62 2775 | 2775 | 2819

10−4 2.27 | 7.52 | 0.98 920.3 | 920.3 | 987.1
2.53 | 7.38 | 0.96 920.3 | 920.3 | 987.1

mpg7 10−3 0.32 | 1.02 | 0.04 1669 | 1669 | 2076
(392;3432) 0.35 | 1.02 | 0.04 1669 | 1669 | 2076

10−4 0.37 | 2.90 | 0.16 890 | 890 | 985.57
0.41 | 3.16 | 0.16 890 | 890 | 985.57

space_ga9 10−3 0.81 | 2.34 | 0.10 31.9 | 31.9 | 62.08
(3107;5005) 0.94 | 2.40 | 0.12 31.9 | 31.9 | 62.08

10−4 2.27 | 7.52 | 0.98 19.88 | 19.88 | 31.63
2.53 | 7.38 | 0.96 19.88 | 19.88 | 31.63

Table 5.1: Performance comparisons of SSNAL in Matlab and R and glmnet
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(a) pyrim5 (b) triazines4

(c) abalone7 (d) bodyfat7

(e) housing7 (f) mpg7

(g) space_ga9

Figure 5.1: MSE comparison for R packages (Red: R-SSNAL, Blue: glmnet)
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Data λc min max NNZ

Matlab | R-SSNAL | glmnet Matlab | R-SSNAL | glmnet Matlab | R-SSNAL | glmnet

pyrim5 10−3 -0.0422 | -0.0422 | -0.1732 0.165 | 0.166 | 0.1067 70 | 70 | 166
(74;201376) 10−4 -0.0897 | -0.0896 | -0.63454 0.172 | 0.172 | 0.064 77 | 78 | 1643
triazines4 10−3 -0.163 | -0.163 | -0.163 0.161 | 0.161 | 0.182 565 | 572 | 292

(186;635376) 10−4 -0.458 | -0.458 | -0.4525 0.300 | 0.296 | 0.2465 261 | 261 | 1573
abalone7 10−3 -8.13 | -8.13 | -13.49 11.7 | 11.7 | 11.7 24 | 24 | 21

(4177;6435) 10−4 -13.3 | -13.3 | -12.97 16.1 | 16.1 | 7.96 59 | 59 | 129
bodyfat7 10−3 -0.0465 | -0.0465 | -0.8133 1.05 | 1.05 | 1.202 2 | 2 | 17

(252;116280) 10−4 -0.0526 | -0.0526 | -1.06 1.05 | 1.045 | 1.314 3 | 3 | 49
housing7 10−3 -7.37 | -7.37 | -8.02 3.25 | 3.25 | 4.114 158 | 158 | 163

(506;77520) 10−4 -13.1 | -13.1 | -19.7 11.3 | 11.27 | 8.39 281 | 281 | 484
mpg7 10−3 -5.08 | -5.08 | -23.68 17 | 16.98 | 14.99 47 | 47 | 46

(392;3432) 10−4 -11.8 | -11.8 | -18.93 15.3 | 15.3 | 16.38 128 | 128 | 172
space_ga9 10−3 -1.14 | -1.14 | -3.68 0.978 | 0.978 | 3.77 14 | 14 | 19
(3107;5005) 10−4 -3.56 | -3.56 | -4.59 2.64 | 2.64 | 4.71 38 | 38 | 58

Table 5.2: Performance comparisons of SSNAL in Matlab and R and glmnet

5.2 Methylation Data

We first performed a 10-fold cross-validation using cv.glmnet() to a data set
consisting of 656 subjects’ methylation β levels across approximately 450,000 loci
in order to determine an appropriate range of λ with which to run the R-SSNAL
implementation.

We were unable to run a 10-fold cross-validation on methylation data using R-
SSNAL due to computational power and optimisation restraints which prohibited
convergence in reasonable time with sensible stoptol, ϵ and maxiter, particularly at
lower values of λ. This is to be expected since having a relatively looser constraint
on the parameters would increase the number of non-zero values, and thus decrease
the sparsity of the Hessian on which the efficiency of this algorithm depends.

We did however compare the objective values returned by R-SSNAL and
glmnet at 11 values of λ around the optimimum returned by cv.glmnet (Figure
5.2) and found that in this setting the objective value returned by R-SSNAL
was indeed around 2-3% lower than that returned by glmnet. It is therefore to
be expected that if, as with the UCI and Statlib data, lower primal objectives
translate to better MSEs in a cross-validation, this algorithm would do better on
these data than glmnet with unrestrained computing power.

It is interesting to note that (Hannum et al. 2013) [23] attributed residual
unexplained variance in the age prediction accuracy using the methylome to “over-”
or “under-aging”, and similar work has suggested clinical outcomes to be correlated
to this residual. Although not directly comparable to that paper, which employed
an elastic net regression, our findings show that at least some of the residual
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Figure 5.2: Objectives on methylation data for R packages (Red: R-SSNAL,
Blue: glmnet)

Figure 5.3: Cross-validation results at optimal λ

variance can be sometimes be attributed to improper convergence of the algorithm
used, and better algorithms may do better at specifying this residual, if it exists.

The results of a 10-fold cross-validation at the optimal λ are shown for interest
in Figure 5.3. Predicted age is very strongly linearly correlated with the actual age
(σ ≈ 6.6), so with these results, the methylome can probably be used to sensibly
pinpoint the decade of age.
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Chapter 6

Conclusion

In this paper, we have presented the fundamental principles underlying multi-
variate linear regression. In high-dimensional, underdetermined settings, such as
those encountered in machine learning, or in data with a high degree of sparsity, it
is useful to regularise the ℓ1 norm of the coefficient vector β, such that a substantial
number of regressors are set to zero, resulting in more robust, explainable models.

This Lasso technique results in a convex optimisation problem, with Lagrangian
dual, for which several efficient first- and second-order algorithms have been
designed. We replicate in the R language the work of (Li et al. 2018) [30],
in which they propose and implement their semismooth Newton augmented
Lagrangian algorithm in Matlab.

The ingenuity of the algorithm is predicated mostly on the sparsity of the
Hessian matrix involved in solving the subproblem required for Newton’s method
- making this a second-order method. Ordinarily, square matrix inversion would
be O(n3), and so making this matrix smaller results in a massive speed-up, since
most computation work is done here. Other optimisations are also made on it,
such as quasi-minimal residual (PSQMR) decomposition and preconditioning.

Overall, however, the algorithm in base Matlab was slower than glmnet in R.
We were able to replicate the results of the Matlab package, entitled SuiteLasso,
in R, although it was slower than both. We intend to optimise further, compile
the code, and - with the consent of the original authors - release an R package for
general use.

We have demonstrated that our code in R works as intended and, with several
datasets, have shown that it is capable of generating better objective values for
the Lasso minimisation problem, which hold up in cross-validation by yielding
better MSE values, than the most widely used package glmnet.

In future, we aim to explore SSNAL further, which can in theory be applied to
any suitably specified optimisation problem, such as elastic net regression (Boschi
et al. 2020) [4], which is a regularised regression that interpolates between the
Lasso and ridge regressions, taking these as edge cases, according to the objective
∥Ax− b∥22/2 + αλ∥x∥1 + (1− α)λ∥x∥2. It may also be useful for the even more
general setting of constraining the multivariate linear regression on the q-norm (for
positive rational q) of the parameter vector. To that, we will finalise by publishing
our package on CRAN.

31



Bibliography

[1] Bates, Douglas and Eddelbuettel, Dirk. “Fast and elegant numerical linear
algebra using the RcppEigen package”. In: Journal of Statistical Software
52 (2013), pp. 1–24.

[2] Beck, Amir and Teboulle, Marc. “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems”. In: SIAM journal on imaging sciences
2.1 (2009), pp. 183–202.

[3] Bertsekas, Dimitri. Convex optimization algorithms. Athena Scientific, 2015.

[4] Boschi, Tobia, Reimherr, Matthew, and Chiaromonte, Francesca. “An Effi-
cient Semi-smooth Newton Augmented Lagrangian Method for Elastic Net”.
In: arXiv preprint arXiv:2006.03970 (2020).

[5] Bouman, Charles. ECE641 - Lecture 22: Augmented Lagrangian for Con-
strained Optimization. 2020.

[6] Boyd, Stephen, Boyd, Stephen P, and Vandenberghe, Lieven. Convex opti-
mization. Cambridge university press, 2004.

[7] Boyd, Stephen, Parikh, Neal, and Chu, Eric. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Now
Publishers Inc, 2011.

[8] Chang, Chih-Chung and Lin, Chih-Jen. “LIBSVM: a library for support
vector machines”. In: ACM transactions on intelligent systems and technology
(TIST) 2.3 (2011), pp. 1–27.

[9] Clarke, Frank H. Optimization and nonsmooth analysis. SIAM, 1990.

[10] Cui, Ying, Sun, Defeng, and Toh, Kim-Chuan. “On the asymptotic super-
linear convergence of the augmented Lagrangian method for semidefinite
programming with multiple solutions”. In: arXiv preprint arXiv:1610.00875
(2016).

[11] De Simone, Valentina et al. “Sparse Approximations with Interior Point
Methods”. In: Siam review (2022).

[12] Deng, Zengde, Yue, Man-Chung, and So, Anthony Man-Cho. “An Efficient
Augmented Lagrangian-Based Method for Linear Equality-Constrained
Lasso”. In: (2020), pp. 5760–5764.

[13] Dua, Dheeru and Graff, Casey. UCI Machine Learning Repository. 2017.
url: https://archive.ics.uci.edu/ml.

32

https://archive.ics.uci.edu/ml


SSNAL for Solving Lasso Problems with Implementation in R 33

[14] Fan, Jianqing and Li, Runze. “Variable selection via nonconcave penalized
likelihood and its oracle properties”. In: Journal of the American statistical
Association 96.456 (2001), pp. 1348–1360.

[15] Fenchel, Werner. “On conjugate convex functions”. In: Canadian Journal of
Mathematics 1.1 (1949), pp. 73–77.

[16] Fountoulakis, Kimon, Gondzio, Jacek, and Zhlobich, Pavel. “Matrix-free
interior point method for compressed sensing problems”. In: Mathematical
Programming Computation 6.1 (2014), pp. 1–31.

[17] Freund, Roland W. “Preconditioning of symmetric, but highly indefinite
linear systems”. In: 15th IMACS World Congress on Scientific Computation,
Modelling and Applied Mathematics. Vol. 2. 1997, pp. 551–556.

[18] Friedman, Jerome, Hastie, Trevor, and Tibshirani, Rob. “Regularization
paths for generalized linear models via coordinate descent”. In: Journal of
statistical software 33.1 (2010), p. 1.

[19] Gaines, Brian R, Kim, Juhyun, and Zhou, Hua. “Algorithms for fitting the
constrained lasso”. In: Journal of Computational and Graphical Statistics
27.4 (2018), pp. 861–871.

[20] Gauraha, Niharika. “Introduction to the LASSO”. In: Resonance 23.4 (2018),
pp. 439–464.

[21] Goebel, Rafal and Rockafellar, R Tyrrell. “Local strong convexity and local
Lipschitz continuity of the gradient of convex functions”. In: Journal of
Convex Analysis 15.2 (2008), p. 263.

[22] Gondzio, Jacek. “Matrix-free interior point method”. In: Computational
Optimization and Applications 51.2 (2012), pp. 457–480.

[23] Hannum, Gregory et al. “Genome-wide methylation profiles reveal quantita-
tive views of human aging rates”. In: Molecular cell 49.2 (2013), pp. 359–
367.

[24] Hastie, Trevor, Tibshirani, Robert, and Friedman, Jerome. The elements of
statistical learning - data mining, inference and prediction. Springer, 2009.

[25] Hastie, Trevor, Tibshirani, Robert, and Wainwright, Martin. Statistical
learning with sparsity - the Lasso and generalizations. CRC Press, 2015.

[26] Hintermüller, Michael. “Semismooth Newton methods and applications”. In:
Department of Mathematics, Humboldt-University of Berlin (2010).

[27] Huang, Ling et al. “Predicting execution time of computer programs using
sparse polynomial regression”. In: Advances in neural information processing
systems 23 (2010), pp. 883–891.

[28] Lam, Xin Yee et al. “Fast algorithms for large-scale generalized distance
weighted discrimination”. In: Journal of Computational and Graphical Statis-
tics 27.2 (2018), pp. 368–379.

33



SSNAL for Solving Lasso Problems with Implementation in R 34

[29] Li, Xudong, Sun, Defeng, and Toh, Kim-Chuan. “QSDPNAL: A two-phase
augmented Lagrangian method for convex quadratic semidefinite program-
ming”. In: Mathematical Programming Computation 10.4 (2018), pp. 703–
743.

[30] Li, Xudong, Sun, Defeng, and Toh, Kim-Chuan. “A highly efficient semis-
mooth Newton augmented Lagrangian method for solving Lasso problems”.
In: SIAM Journal on Optimization 28.1 (2018), pp. 433–458.

[31] Li, Xudong, Sun, Defeng, and Toh, Kim-Chuan. “On efficiently solving
the subproblems of a level-set method for fused lasso problems”. In: SIAM
Journal on Optimization 28.2 (2018), pp. 1842–1866.

[32] Li, Xudong, Sun, Defeng, and Toh, Kim-Chuan. “An asymptotically su-
perlinearly convergent semismooth Newton augmented Lagrangian method
for Linear Programming”. In: SIAM Journal on Optimization 30.3 (2020),
pp. 2410–2440.

[33] Lin, Meixia et al. “Efficient sparse semismooth Newton methods for the
clustered Lasso problem”. In: SIAM Journal on Optimization 29.3 (2019),
pp. 2026–2052.

[34] Mifflin, Robert. “Semismooth and semiconvex functions in constrained op-
timization”. In: SIAM Journal on Control and Optimization 15.6 (1977),
pp. 959–972.

[35] Parikh, Neal and Boyd, Stephen. “Proximal algorithms”. In: Foundations
and Trends in optimization 1.3 (2014), pp. 127–239.

[36] Qi, Liqun, Shapiro, Alexander, and Ling, Chen. “Differentiability and semis-
moothness properties of integral functions and their applications”. In: Math-
ematical Programming 102.2 (2005), pp. 223–248.

[37] Qi, Liqun and Sun, Jie. “A nonsmooth version of Newton’s method”. In:
Mathematical programming 58.1 (1993), pp. 353–367.

[38] Rockafellar, R Tyrrell. “Augmented Lagrangians and applications of the
proximal point algorithm in convex programming”. In: Mathematics of
operations research 1.2 (1976), pp. 97–116.

[39] Rockafellar, R Tyrrell. “Monotone operators and the proximal point algo-
rithm”. In: SIAM journal on control and optimization 14.5 (1976), pp. 877–
898.

[40] Rockafellar, Ralph Tyrell. Convex analysis. Princeton university press, 2015.

[41] Schmidt, Mark. “Graphical model structure learning with l1-regularization”.
In: University of British Columbia (2010).

[42] Tibshirani, Robert. “Regression shrinkage and selection via the lasso”. In:
Journal of the Royal Statistical Society: Series B (Methodological) 58.1
(1996), pp. 267–288.

[43] Tyrrell Rockafellar, R and Wets, Roger J-B. “Variational analysis”. In:
Grundlehren der mathematischen Wissenschaften 317 (1998).

34



SSNAL for Solving Lasso Problems with Implementation in R 35

[44] Van Loan, Charles F and Golub, G. “Matrix computations (Johns Hopkins
studies in mathematical sciences)”. In: (1996).

[45] Vlachos, Panetelis. StatLib. 2005. url: http://lib.stat.cmu.edu/
datasets.

[46] Wolfe, Philip. “Convergence conditions for ascent methods”. In: SIAM review
11.2 (1969), pp. 226–235.

[47] Xiao, Xiantao et al. “A regularized semi-smooth Newton method with
projection steps for composite convex programs”. In: Journal of Scientific
Computing 76.1 (2018), pp. 364–389.

[48] Yuan, Guo-Xun, Ho, Chia-Hua, and Lin, Chih-Jen. “An improved glmnet
for l1-regularized logistic regression”. In: The Journal of Machine Learning
Research 13.1 (2012), pp. 1999–2030.

[49] Zhang, Yangjing et al. “An efficient Hessian based algorithm for solving
large-scale sparse group Lasso problems”. In: Mathematical Programming
179.1 (2020), pp. 223–263.

[50] Zhao, Xin-Yuan, Sun, Defeng, and Toh, Kim-Chuan. “A Newton-CG aug-
mented Lagrangian method for semidefinite programming”. In: SIAM Journal
on Optimization 20.4 (2010), pp. 1737–1765.

[51] Zhou, Yuhao et al. “A semi-smooth Newton based augmented Lagrangian
method for nonsmooth optimization on matrix manifolds”. In: arXiv preprint
arXiv:2103.02855 (2021).

35

http://lib.stat.cmu.edu/datasets
http://lib.stat.cmu.edu/datasets


Appendix A

Proofs

A.1 Deriving Lagrangian Dual

We begin by letting Ax = τ ∈ Rm. Then the Lagrangian primal form (2.15) is
equivalent to

D = min
x∈Rn, τ∈Rm

∥τ − b∥2 + λ∥x∥1 : τ = Ax

Now we introduce another Lagrange multiplier, ξ ∈ Rm

D = min
x∈Rn, τ∈Rm

max
ξ∈Rm

∥τ − b∥2 + λ∥x∥1 + ⟨ξ, Ax− τ⟩ (1)

By Slater’s Condition, we can exchange the min and max in (1) to conclude

D = max
ξ∈Rm

min
x∈Rn, τRm

∥τ − b∥2 + λ∥x∥1 + ⟨ξ, Ax− τ⟩

= max
ξ∈Rm

[
min
τ∈Rm

{∥τ − b∥2 − ⟨ξ, τ⟩}+ min
x∈Rn

{λ∥x∥1 + ⟨AT ξ, x⟩}
]

:= max
ξ∈Rm

T1(ξ) + T2(ξ)

As we made the substitution τ = Ax, we are now able to separate the problems
into T1(ξ) and T2(ξ). We work on T1(ξ) and referring to 2.6, we have

T1(ξ) = −1

2
∥ξ∥2 + ⟨ξ, b⟩

We consider T2(ξ) coordinate-wise. For every i ∈ {1, . . . , n}, we solve

T2,i(ξ) := min
xi∈R

λ|xi|+ (AT ξ)ixi

= min
xi∈R

(λ+ sgn(xi)(A
T ξ)i)|xi|

Then we consider separate cases where,

T2,i(ξ) =

{
0, if |(AT ξ)i| ≤ λ,

∞, otherwise
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Hence,

T2(ξ) =
n∑

i=1

T2,i(ξ) =

{
0, if ∥AT ξ∥∞ ≤ λ

∞, otherwise

Putting the pieces together we have,

D = max
ξ∈Rm

−1

2
∥ξ∥2 + ⟨ξ, b⟩ : ∥AT ξ∥∞ ≤ λ
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Appendix B

Code Example

The following code can be accessed in our Github repository below,
https://github.com/johnnymdoubleu/lassoSSNAL

We first call or install the necessary libraries.

library(rmatio1) # read in .mat format files
library(Rcpp2) # source C++ files
library(RSpectra3) # computes the eigen values
library(Matrix) # handles matrix operations

Now, we source the R and C++ files that comprise our algorithm

source("Classic_Lasso_SSNAL.R")
source("Classic_Lasso_SSNAL_main.R")
source("Classic_Lasso_SSNCG.R")
source("proj_inf.R")
source("linsyssolve.R")
source("findstep.R")
source("psqmry.R")
source("matvec_ClassicLasso.R")
source("findnnz.R")
sourceCpp("mex_matrix_mult.cpp")
sourceCpp("mexsigma_update_classic_Lasso_SSNAL.cpp")

The following code lines now operates the SSNAL algorithm.

# load the data and split them into response and
# explanatory variables for Lasso regression.
data <- read.mat("UCIdata/abalone_scale_expanded7.mat")
A <- data$A
b <- data$b

1https://github.com/stewid/rmatio
2https://github.com/RcppCore/Rcpp
3https://github.com/yixuan/RSpectra
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# defining the necessary arguments for the function
eps <- 2.220446e-16 # Copy the MATLAB eps essentially
n <- ncol(A)
c <- 10^(-4) # 10^(-3)
rho <- c * max(abs(t(t(b) %*% A)))
# evaluate the Lipschitz condition
lipfun <- function(b, A){

return(t(t(A%*%b) %*% A))
}
eigs_AtA <- eigs_sym(lipfun, k = 1, n = n, args = A)

# set running parameters for R-SSNAL
opts <- c()
opts$stoptol <- 1e-6
opts$Lip <- eigs_AtA$values
opts$Ascale <- 1
opts$maxiter <- 1000

# running the algorithm and outputs with total profiling
Rprof()
clo <- Classic_Lasso_SSNAL(A, b, n, rho, opts)
Rprof(NULL)
summaryRprof()

# portion of the output values
cat("min(X) = ", clo$info$minx, "\n")
cat("max(X) = ", clo$info$max, "\n")
cat("nnz = ", findnnz(clo$info$x,0.999)$k, "\n")
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